Sharp Bounds on Geometric Permutations of Pairwise Disjoint Balls in IRd

نویسندگان

  • Shakhar Smorodinsky
  • Joseph S.B. Mitchell
  • Micha Sharir
چکیده

(i) We prove that the maximum number of geometric permutations, induced by line transversals to a collection of n pairwise disjoint balls in IR d , is (n d?1). This improves substantially the general upper bound of O(n 2d?2) given in 11]. (ii) We show that the maximum number of geometric permutations of a suuciently large collection of pairwise disjoint unit discs in the plane is 2, improving a previous upper bound of 3 given in 7].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric permutations of balls with bounded size disparity

We study combinatorial bounds for geometric permutations of balls with bounded size disparity in d-space. Our main contribution is the following theorem: given a set S of n disjoint balls in R , if n is sufficiently large and the radius ratio between the largest and smallest balls of S is γ , then the maximum number of geometric permutations of S is O(γ logγ ). When d = 2, we are able to prove ...

متن کامل

The triples of geometric permutations for families of disjoint translates

A line meeting a family of pairwise disjoint convex sets induces two permutations of the sets. This pair of permutations is called a geometric permutation. We characterize the possible triples of geometric permutations for a family of disjoint translates in the plane. Together with earlier studies of geometric permutations this provides a complete characterization of realizable geometric permut...

متن کامل

Maximum Size of a Family of Pairwise Graph-Different Permutations

Two permutations of the vertices of a graph G are called G-different if there exists an index i such that i-th entry of the two permutations form an edge in G. We bound or determine the maximum size of a family of pairwise G-different permutations for various graphs G. We show that for all balanced bipartite graphs G of order n with minimum degree n/2 − o(n), the maximum number of pairwise G-di...

متن کامل

Some Discrete Properties of the Space of Line Transversals to Disjoint Balls

Attempts to generalize Helly’s theorem to sets of lines intersecting convex sets led to a series of results relating the geometry of a family of sets in Rd to the structure of the space of lines intersecting all of its members. We review recent progress in the special case of disjoint Euclidean balls in Rd, more precisely the inter-related notions of cone of directions, geometric permutations a...

متن کامل

The Harmony of Spheres

Let F = {X1, . . . , Xn} be a family of disjoint compact convex sets in R. An oriented straight line ` that intersects every Xi is called a (line) transversal to F . A transversal naturally induces an ordering of the elements of F , this ordering, together with its reverse (which is induced by the same line with opposite orientation), is called a geometric permutation. Geometric transversal the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998